

higher education & training

Department:
Higher Education and Training
REPUBLIC OF SOUTH AFRICA

T1130(E)(N12)T NOVEMBER 2010

NATIONAL CERTIFICATE

INDUSTRIAL ELECTRONICS N5

(8080175)

12 November (X-Paper) 09:00 – 12:00

Calculators may be used.

This question paper consists of 5 pages and a 6-page formula sheet.

DEPARTMENT OF HIGHER EDUCATION AND TRAINING REPUBLIC OF SOUTH AFRICA

NATIONAL CERTIFICATE
INDUSTRIAL ELECTRONICS N5
TIME: 3 HOURS
MARKS: 100

INSTRUCTIONS AND INFORMATION

- Answer ALL the questions.
- Read ALL the questions carefully.
- ALL the calculations must be shown.
- ALL sketches and diagrams must be labelled and neat.
- Keep questions and sub-sections of questions together.
- Number the answers correctly according to the numbering system used in this
 question paper.
- 7. Write neatly and legibly.

QUESTION 1: ALTERNATING CURRENT THEORY

1.1 A serial RC circuit takes 1 ms to charge up to 63,2% of the applied voltage V_T .

If R = 100 k Ω and V_T = 6 V, calculate the following:

1.1.1 The value of C

(2)

1.1.2 V_c after 1 ms

(2)

1.2 Three components are connected in parallel across a 10 V, 50Hz supply. The values of the components are as follows:

R = 5 Ω ; L = 20 mH and C = 100 μ f

Calculate the following:

- 1.2.1 The total impedance (6)
- 1.2.2 The total current flow (2)
- 1.2.3 The current through the three branches (6)
 [18]

QUESTION 2: POWER SUPPLIES

2.1 An RC- π -filter delivers an output voltage of 12 V. If

 $X_{C2}=8~\Omega;$ R = 10 $\Omega;$ R_L = 300 Ω and $V'_{r(ms)}=0.8~V$, calculate the following:

- 2.1.1 V_{DC} across the first capacitor (2)
- 2.1.2 $V'_{r(ms)}$ across the first capacitor (2)
- 2.1.3 r' across the second capacitor (2)
- Draw a neatly labelled circuit diagram that provides over-voltage protection in a power supply and briefly describe how the circuit operates. (6) [12]

QUESTION 3: TRANSISTOR AMPLIFIERS

3.1 The following values of a common-emitter amplifier are known:

$$^{1}_{C(MAX)} = 10 \text{ mA};$$
 $R_{E} = 120 \Omega;$ $\beta = 250 \text{ and } V_{B} = 1.8 \text{ V}$

Calculate the following:

- 3.1. 1 V_{cc} (4)
- 3.1. 2 R_{B2} (2)
- 3.1. 3 R_{B1} (2)

3,2	Use the accord	ne values ing to the	of prec	QUESTION 3.1 ise method:	and	determine	the	following	y values	
	3.2.1	Z_1								(2)
	3.2.2	Z_{l}						•		(3)
	3.2.3	A_{i}								(4)
	Given:	R_{G}	Ξ	2 kΩ						(7
		h _{ie}	=	1,2 kΩ						
		h _{re}	=	2 x 10 ⁻⁴						
		h _{fe}	=	100						
		h _{oe}	=	20 μΑ/v						[17]
QUES	TION 4: O	PERATIC	ΝΔΙ	AMDI IEIEDO						
QUESTION 4: OPERATIONAL AMPLIFIERS 4.1 Explain the following terms as applied to the operational amplifiers:										
	4.1.1	Input-of			the of	perational	ampli	fiers:		(2)
	4.1.2	Invertin		•						(2)
4.2	4.2.1			uit diagram of an	invert	ling opera	tional	amplifiar		(2)
	4.2.2	The inp –2V and	ut sig	nal to an operation input resistance te the feedback re	nalaı is 20	mplifier in	the in	vertina n	nodo io	(3)
4.3	Draw a neat, labelled circuit diagram of an operational band-reject filter.						(7) [16]			
QUEST	TION 5: TR	ANSDUC	ERS							
Indicate and wri BOOK.	whether the te only 'true	ne followi	ing s 'nex	atements are TR t to the question	UE o	r FALSE. er (5.1 –	Cho o 5.3) in	se the a	inswer SWER	
5.1	CMOS-intergrated circuits have a higher noise immunity.							(1)		
5.2	CMOS-integrated circuits are susceptible to static charges because of their low reactive input						(1)			
5.3	As soon as you work on the CMOS-integrated circuits, the power supply to the circuits must be switched off.									
	nie circtiis	musi de	swit	ned off.			•	•	- -	(1) [3]
									5-6	

QUESTION 6: TRANSDUCERS

-						
6.1	If a potentiometer has a resolution of 2%, what will the supply voltage be if the voltage drop across two adjacent turns is 10 mV?	(3)				
6.2	Explain, with the aid of a neat sketch and brief descriptions, how an optic fibre as a communication medium can transfer signals.	(5)				
6.3	State ONE application of optic fibre.	(1) [9]				
QUEST	ION 7: ELECTRONIC PHASE CONTROL					
	vith the aid of a sketch, what is meant by a half-controlled bridge rectifier circuit. the output wave form.	[5]				
QUESTION 8: TEST EQUIPMENT						
8.1	Briefly describe the principle of operation of a successive approximation A/D-converter.	(6)				
8.2	What is the function of the comparator in the staircase-A/D-voltmeter?	(2) [8]				
QUEST	ION 9: OSCILLATORS					
9.1	Design a switching circuit that will switch a lamp on for one minute when an infrared ray is interrupted. The circuit must include an infrared diode, an operational amplifier and a 555 precision timer.	(10)				
9.2	Calculate the value of the resistor in the timer if a capacitor value of 470 μf is used.	(2) [12]				
	TOTAL:	100				

INDUSTRIAL ELECTRONICS N5

FORMULA SHEET

$$I = \frac{V}{R}$$

$$P = IV = I^{2}R = \frac{V^{2}}{R}$$

$$V_{T} = V_{1} + V_{2} + V_{3} + \dots = I_{1}R_{1} + I_{2}R_{2} + I_{3}R_{3} + \dots$$

$$I_T = I_1 + I_2 + I_3 + \dots = \frac{V_1}{R_1} + \frac{V_2}{R_2} + \frac{V_3}{R_3} + \dots$$

$$T = RC$$
 $T = -$

$$V_{R} = RC \frac{dv}{dt}$$

$$V_{C} = \frac{1}{RC} \int v_{i} dt$$

$$X_{L} = 2\pi f L \qquad X_{C} = \frac{1}{2\pi f C}$$

$$Z = R + jX_{L}$$

$$Z = R + j(X_{L} - X_{C})$$

$$Z = R + j(X_{L} - X_{C})$$

$$I_{T} = \frac{V_{T}}{V_{T}}$$

$$Z = R + j(X_L - X_C)$$

$$I_T = \frac{V_T}{Z_T}$$

$$V_R = I_T R$$

$$V_L = I_T (jX_L)$$

$$V_C = I_T(-jX_C) f_r = \frac{1}{2\pi\sqrt{LC}}$$

$$Q = \frac{V_L}{V_T} = \frac{V_C}{V_T} = \frac{X_L}{R} = \frac{X_C}{R} = \frac{1}{R} \sqrt{\frac{L}{C}} = \frac{f_r}{f_2 - f_1}$$

$$BW = f_2 - f_1$$

$$\frac{1}{Z_T} = \frac{1}{Z_1} + \frac{1}{Z_2}$$

$$Z_2 Z_2$$

$$Z_T = \frac{Z_2 Z_2}{Z_1 + Z_2} \qquad I_T = I_1 + I_2 = \frac{V}{Z_1} + \frac{V}{Z_2}$$

$$Z_T = \frac{R(jX_L)}{R + jX_L} \qquad \frac{1}{Z_T} = \frac{1}{R} - \frac{j}{X_L}$$

$$I_T = I_R - jI_L$$

$$I_T = \frac{V}{R} - j\frac{V}{X_L}$$

$$Z_T = \frac{R(-jX_C)}{R - jX_C} \qquad \frac{1}{Z_T} = \frac{1}{R} + \frac{j}{X_C}$$

PTO

$\frac{1}{Z_T} = \frac{1}{R} - j \left(\frac{1}{X_L} - \frac{1}{X_C} \right)$	
$I_T = I_R - j(I_L - I_C)$	$I_T = \frac{V}{R} - j \left(\frac{V}{X_L} - \frac{V}{X_C} \right)$
$a+jb = \sqrt{a^2+b^2}/\tan^{-1}\frac{b}{a} = r/\theta$	
$r\underline{/\theta} = r(\cos\theta + j\sin\theta)$	$Q = \tan \theta$
$f = \frac{1}{2\pi} \sqrt{\frac{1}{LC} - \frac{R^2}{L^2}}$	$Z_d = \frac{L}{CR_1}$
$V_{rms} = \frac{1}{\sqrt{2}} V_m = 0,707 V_m$	$V_{dc} = \frac{2}{\pi} V_m = 0,637 V_m$
$\frac{V_P}{V_S} = \frac{N_P}{N_S} = \frac{I_S}{I_P}$	$V_{dc} = \frac{1}{\pi} V_m = 0.318 V_m$
$PIV = V_m$	$PIV = 2 V_m$
$R_{r(rms)} = 0.385 V_m$	$V_{r(rms)} = 0.305 V_m$
$r = \frac{V_{r(rms)}}{V_{dc}}$	$V_{r(rms)} = \frac{V_{r(p-p)}}{2\sqrt{3}}$
$V_{dc} = V_m - \frac{V_{r(p-p)}}{2}$	
$V_{dc} = V_m - \frac{I_{dc}}{2fC}$	$V_{dc} = V_m - \frac{I_{dc}}{4fC} \qquad . $
$V_{r(rms)} = \frac{I_{dc}}{2\sqrt{3}fC} = \frac{V_{dc}}{2\sqrt{3}fCR_L}$	$V_{r(rms)} = \frac{I_{dc}}{4\sqrt{3}fC} = \frac{V_{dc}}{4\sqrt{3}fCR_L}$
$r = \frac{I_{dc}}{2\sqrt{3}fCV_{dc}} = \frac{1}{2\sqrt{3}fCR_L}$	$r = \frac{I_{dc}}{4\sqrt{3} fCV_{dc}} = \frac{1}{4\sqrt{3} fCR_L}$
$V'_{dc} = \frac{R_L}{R + R_L} \cdot V_{dc}$	$V_{r(rms)}^{\dagger} = \frac{X_C}{\sqrt{R^2 + X_C^2}} \cdot V_{r(rms)}$
$X_C = \frac{1}{2\pi f C} \qquad X_C = \frac{1}{4\pi f C}$	$r' = \frac{V'_{r(rms)}}{V'_{dc}}$
$V'_{r(rms)} = \frac{X_C}{R} \cdot V_{r(rms)}$	$r' = rX_C \left(\frac{R + R_L}{R.R_L} \right)$

$$V'_{dc} = V_{dc} - I_{dc} R_{\rm I}$$

$$V'_{r(rms)} = \frac{V_{r(rms)}}{(2\pi f)^2 LC}$$

$$VR = \frac{V_{NL} - V_{FL}}{V_{FL}}$$

$$2V_m = V_{c2} = V_m + V_{c1}$$

$$S = \frac{\Delta V_o}{\Delta V_i}$$

$$R_{s(\min)} = \frac{V_{i(\max)} - V_z}{I_{z(\max)}}$$

$$R_{L(\min)} = \frac{V_Z}{V_{l(\max)} - V_Z} \cdot R_S$$

$$R_c = \frac{V_{cc} - V_{ce}}{I_c}$$

$$\beta = \frac{I_c}{I_b}$$

$$V_e = \frac{V_{cc}}{10}$$

$$R_c = \frac{V_{cc} - V_{ce} - V_e}{I_c}$$

$$R_{b1} = \frac{R_{b2}(V_{cc} - V_b)}{V_b}$$

$$V_b = V_e + V_{be}$$

$$V_{be} = h_{ie}i_b + h_{re}V_{ce}$$

$$A_i = \frac{h_{fe}}{1 + h_{oe} Z_L}$$

$$A_i = \left(\frac{h_{fe}}{1 + h_{oe}Z_L}\right) \left(\frac{R_bT}{R_{bT} + Z_1}\right) \left(\frac{R_c}{R_c + R_I}\right)$$

$$A_{v} = \frac{-h_{fe}Z_{L}}{h_{ie} + (h_{ie}h_{oe} - h_{fe}h_{re})Z_{L}}$$

$$Z_1 = h_{ie} - \frac{h_{fe} h_{re} Z_L}{1 + h_{oe} Z_L}$$

$$V^{\prime}_{dc} = \frac{R_L}{R_L + R_1} \cdot V_{dc}$$

$$V'_{r(rms)} = \frac{V_{r(rm)}}{(4\pi f)^2 LC}$$

$$\%VR = \frac{V_{NL} - V_{FL}}{V_{FL}} \times 100$$

$$3V_m = V_{c1} + V_{c3} = V_m + 2V_m$$

$$V_R = V_i - V_z$$

$$I_z = \frac{P_z}{V_-}$$

$$V_o = V_r - V_{be}$$

$$R_b = \frac{V_{cc} - V_{be}}{I_b}$$

$$C_e \ge \frac{10}{2\pi f R_e}$$

$$R_e = \frac{V_e}{I_e} \simeq \frac{V_e}{I_c}$$

$$R_b = \frac{V_{cc} - V_{be} - V_e}{I_b}$$

$$R_{b2} = \frac{1}{10} \beta R_e$$

$$i_c = i_{fe}i_b + h_{oe}V_{ce}$$

$$A_i = h_{fe}$$

$$A_{v} = \frac{-h_{fe}Z_{L}}{h_{ia}}$$

$$Z_1 = h_{ie}$$

PTO

$$Z_{2} = \frac{1}{h_{oe} - \frac{h_{fe}h_{re}}{h_{ie} + R_{s}}}$$

$$Z_{2} = \frac{1}{h_{oe}}$$

$$Z_{2} = \frac{1}{h_{oe}}$$

$$A_{p} = \frac{A_{i}^{2}R_{L}}{R_{1}} = -A_{v}A_{i}$$

$$A_{p} = \frac{h_{fe}^{2}R_{L}}{h_{ie}}$$

$$Z_{0} = R_{C} // R_{L} // Z_{2} = Z_{L} // Z_{2}$$

$$Z_{0} = R_{C} // Z_{2} = Z_{L} // Z_{2}$$

$$Z_{1} = R_{b} // Z_{1}$$

$$Z_{1} = R_{b} // Z_{1}$$

$$I_{1} = \frac{R_{b}TI_{i}}{R_{bT} = Z_{1}}$$

$$I_{0} = h_{fe}I_{b} = h_{fe}\left(\frac{R_{b2}(I_{i})}{R_{b2} + h_{ie}}\right)$$

$$A_{i} = \frac{I_{0}}{I_{1}}$$

For common base, substitute all the 'e' subscripts with a 'b' in the h-parameters.

$$\begin{split} Z_L &= R_c \, / \! / \, R_L \\ Z_L &= R_c \, / \! / \, R_L \\ Z_L &= R_c \, / \! / \, R_L \\ Z_L &= \frac{A_{dm}}{A_{cm}} \\ Z_L &= \frac{A_{dm}}{A_{cm}} \\ Z_L &= \frac{V_e}{R_e} \\ Z_L &= \frac{V_R}{R_e} \\ Z_L &= \frac{V_R}{R_L} \\ Z_L &= \frac{V_R}{I_C} \\ Z_L &= \frac{I_e}{2} \\ Z_L &= \frac{I_e}{2} \\ Z_L &= \frac{I_e}{2} \\ Z_L &= \frac{I_e}{R_L} \\ Z_$$

$$V_0(t) = -RC\frac{dV_i(t)}{dt}$$

$$A = -\frac{R_f}{R_s}$$

$$t = R_f C$$

$$V_0 = \frac{R_f}{R_s} \left(V_2 - V_1 \right)$$

$$f_0 = \frac{1}{2\pi \sqrt{C_1 C_2 R_1 R_2}}$$

$$f_0 = \frac{1}{2\pi\sqrt{L_T C_1}}$$

$$f_0 = \frac{1}{2\pi\sqrt{LC_T}}$$

$$f_0 = \frac{1}{2\pi\sqrt{LC_2}}$$

$$f_0 = \frac{1.5}{RC}$$

$$t_1 = 0.7 R_2 C_1$$

$$f_0 = \frac{1}{1,4RC}$$

$$t = 1,1 RC$$

$$t_{low} = 0.693 \, (R_B) C$$

$$t_T = t_{low} + t_{high}$$

$$\sigma = \Delta l/l$$

$$\sigma = \frac{S}{E}$$

$$A = \frac{R_f}{X_c}$$

$$V_0(t) = -R_f C \frac{d}{dt} \cdot v_t \sin \omega t$$

$$V_0 = A(V_r - V_i)$$

$$V_0 = V_2 - V_1$$

$$f_0 = \frac{1}{2\pi RC}$$

$$L_T = L_1 + L_2 + 2M$$

$$C_T = \frac{C_1 C_2}{C_1 + C_2}$$

$$f = \frac{1}{2\pi RC\sqrt{6}}$$

$$f_0 = \frac{1}{t} = \frac{1}{t_1 + t_2}$$

$$t_2 = 0.7 R_1 C_2$$

$$V_i = I_{c2}R_e + V_{be(ON)}$$

$$f_0 = \frac{1,443}{(R_A + 2R_B)C}$$

$$t_{high} = 0,693 (R_A + R_B) C$$

$$K = \frac{\Delta R / R}{\Delta l / l}$$

$$R = \rho \frac{1}{\pi d^2 / 4}$$

$$Resolution = \frac{1}{amount of turns}$$

• () , . ,

$Resolution = \frac{voltage \ drop \ across \ adjacent \ turns}{total \ voltage \ drop}$

$$R_{l} = Ae^{B/T}$$

$$T = 273 \div {}^{\circ}C$$

$$V_{\mathcal{A}} = \frac{R_2}{R_1 + R_2} \cdot V_T$$

$$V_B = \frac{R_t}{R_t + R_3} \cdot V_T$$

$$V_{AB} = V_A - V_B$$

$$A_{\nu} = \frac{V_0}{V_i}$$

$$V_{Hall} = kIH$$

. • ·